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A general derivation of the electrodynamic response of a quantum many-electron gas in a
nonmagnetic conducting solid immersed in an applied magnetic field is given. Self-consistent-
field (SCF) theory of the equation of motion of the one-electron density matrix is used in such
a way as to include, from the outset, one-electron effects such as complex energy band struc-
ture, spin-orbit coupling, and spin paramagnetism. This treatment specifically omits exchange
effects such as those encountered in an extended random-phase approximation or Landau-Fermi
liquid theory. The aim is to study the properties of wave propagation in the gas, looking for
spin waves and/or characteristic effects which uniquely involve the spin degree of freedom and
the paramagnetism of the equilibrium state. The derived results contain terms which have
been neglected previously and terms which do not evolve from a simple generalization of pre-
vious treatments of the quantum dielectric theory of a Fermi gas. There are interesting spin
effects in the plasma wave properties both with and without spin~-orbit mixing of the one-elec-

tron states.

In an effective mass approximation for the one-electron states, it is shown that

there are resonances and cutoffs associated with electron spin resonance in the transverse
wave propagation (both perpendicular and parallel to the magnetic field). For spin-orbit mixed
states, one finds zeros of the longitudinal dielectric constant (for long wavelength) near the
electron spin-flip frequency. The mechanism for the spin wave associated with this zero is

a correlation of the motion of electrons with “opposite spins” by the long-range Coulomb field
through the spin-orbit coupling of the crystalline eigenstates.

I. INTRODUCTION

Spin-wave excitations of conduction electrons in
solids are usually discussed in relation to the prop-
erties of itinerant ferromagnets, ! and of simple
metals? (in an applied magnetic field) in which weak
exchange® interactions are important. In both
cases éssential roles are played by exchange inter-
actions and the magnetization of the equilibrium
state, ferromagnetism in the former and conduc-
tion electron paramagnetism in the latter. In this
paper we show that interesting spin-wave effects
occur in a solid-state plasma for which simple
self-consistent-field theory is appropriate and ex-
change interactions are unimportant.

It was pointed out in a preliminary publica,tion4
that, even when explicit exchange interactions are
unimportant, electron spin waves can occur in
nonmagnetic conductors owing to spin-orbit cou-

pling and the Coulomb self-consistent field (SCF)
of the interacting electrons. In this previous
work, the collective excitations of the electron

gas were treated in the longitudinal wave approxi-
mation. It was shown that the general SCF longi-
tudinal dielectric constant had zeros (for long wave-
length) near the electron spin-flip frequency. The
mechanism for the spin wave associated with this
zero is a correlation of the motion of electrons
with “opposite spins” by the long-range Coulomb
field through the spin-orbit coupling of the crystal-
line eigenstates. This paper gives a more general
treatment of the SCF collective excitations of the
quantum plasma in a magnetic field. A general
implicit dispersion relation is derived by solving
self-consistently the linearized equation of motion
for the single-electron density matrix and the full
set of Maxwell’s equations. Exchange effects such.
as those encountered in an extended random-phase
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approximation® or Landau-Fermi-liquidtheory®
are not included. The treatment is sufficiently
general to include complex energy band structure,
spin-orbit coupling, and spin paramagnetism.
The results contain terms which have beenneglected
previously and terms which do not evolve from
a simple generalization of previous treatments
" of the quantum dielectric theory of a Fermi gas.
The purpose is to study the properties of wave
propagation in the gas, looking for spin waves
and/or characteristic effects which uniquely in-
volve the spin degree of freedom and the spin
paramagnetism of the equilibrium state. Associ-
ated with electron spin resonance, there are inter-
esting effects in the plasma wave properties both
with and without spin-orbit mixing of the states.
Section II of this article gives a general deriva-
tion of the linear electromagnetic response of a
solid-state quantum magnetoplasma within the SCF
approximation. A complete implicit dispersion
relation for the collective modes of the electron
gas is derived. This general result is quite com-
plicated and is treated approximately in the follow-
ing sections. Section III discusses wave propaga-
tion in an effective mass (and effective g factor)
approximation for the one-electron states. There
are resonances and cutoffs associated with electron
spin resonance in the transverse wave propagation.
The ordinary wave propagating across the magnetic
field and the two circularly polarized waves propa-
gating along the field show these effects. Such phe-
nomena result from the coupling of the perpendic-
ular magnetization of the electrons to the wave
propagation via the oscillating magnetic field of
the wave itself. Unfortunately, these effects are
probably not observable for realistic magnetic
fields and observation frequencies due to the small-
ness of the static spin susceptibility and the size
of typical relaxation times in solids. Section
IV discusses the longitudinal wave approximation
for the collective modes without making the effec-
tive mass approximation for the one-electron
states. A more complete discussion of the spin-
orbit-induced spin-wave* roots of the longitudinal
dielectric constant is given. These waves may be
observable, for example, by inelastic light scatter-
ing in semiconductors. '8

1-11

II. ELECTRODYNAMIC RESPONSE

In this section we derive the linear response of
many electrons to an electromagnetic perturbation
for the case where the electrons are in some par-
tially filled energy band in a crystalline solid im-
mersed in a uniform dc magnetic field. The motion
of the electrons is treated in the SCF approxima-
tion'® in which it is assumed that each electron
responds independently to the total electromagnetic
field consisting of the externally generated fields
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plus the induced fields. The resulting charge
density, current density, and magnetization are
subsequently inserted in Maxwell’s equations,
yielding a general implicit dispersion relation for
the collective modes of the electron gas.

The equation of motion of the one-electron den-
sity matrix p is given by

zﬁ 2L - 1,0, )
where

H:({)-f K0—5K1>72m+ V(¥)+e o,

+ﬁ[<f)—§Ko—gxl)'(astﬂ/hnzcz

+% p‘ﬂ .6' * (§0 + ﬁl) (2)

o

is the Hamiltonian for one electron in the solid
coupled to the total electromagnetic field. In Eq.
(2), A, and ¢, are the potentials associated with
the total fields E, and B,, V(¥) is the potential
energy of one electronin the periodic potential of
the crystal, ugis the Bohr magneton, and g is the
g factor of a free electron. Note that H includes a
spm-orblt coupling term and that the dc magneuc
field Bo appears through its vector potential Ao and
in the magnetic dipole term. Note also that Eq.
(2) includes the magnetic dipole coupling of the mo-
tion of one electron to the perturbing B field. For
simplicity, relaxation effects are neglected. All
of the specific discussion of this paper refers to
a zero-temperature Fermi gas unless otherwise
stated. The generalization to other cases is
straightforward.

The equation of motion (1) must be solved self-
consistently with Maxwell’ s equations which have
as sources the charge density », current density

J, and the magnetization i defined by

n(t, t)=eTr[ps(X-T)], (3)

J(F,0) =LeTr[V6(X-F)p+6(X-T)¥p], (4)
and

m(F,#)=3g up Tr[p5s(X - TF)] . (5)

In Eq. (4), V is the one-electron velocity operator
given by

> browq 1(o e, + =+ n oL =

V=;;[H, 1‘]=;l (P—;(A0+A1)+ IneZ O ><VV>, (6)
the last term being the spin-orbit contribution.
Seeking the response to small driving fields of the
form '@ ¥-9® e linearize Egqs. (1) and (2) and
Fourier analyze in space and time. We set p=p,
+py, where p, is equilibrium density matrix p,(H,),
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and where

-> e -» ->. ﬁ
Hy= (p—; A0>2/2m+V(r)+ i

X[B-(e/c)Re]- GXVV)+1gusG-By (7)
is the unperturbed one-electron Hamiltonian. We
denote the quantum numbers of H, by Greek letters
so that Hyla)=E, la) and py(Hy)l a)=f, |a),
where f, is the Fermi occupation factor. The oper-
ator p, is the first-order response to the perturbing
fields and obeys

Fwpy = [Hy, py]+[Hy, po] - (8)

Solving Eq. (8) for the matrix elements of p, in
the |a) basis in the self-consistent-field approxi-
mation, and using the solution in the linearized
forms of Eqs. (3)—(5), one finds the following
gauge-invariant results:

74(q, w)= - (e%/iw)K - ﬁi (4, w)

+%g“aef’['§1(a, w)’ (9)

=

713, w) = - (Noe?/imw) B, (§, w)

- (e*c¥iw) I -E, (§, )
+igugec N By (g, 0), (10)
and
6, (8, )= Ggua)s- B (@ »)
- (gupec/2w)N-E(q, w) . (11)

In the above equations, N is the equilibrium elec-
tron number density and we have defined

=13 (ale®*|p) (ol 7D]8) e (12)
a,B

=2 (ale Y py(a|Ge ™t B) ¥4, , (13)
a,B

g=;gE<alv(q |8 (a[F(@]8)* 4as » (14)
N-3 T (af3(@)|0)(al 5 |Brus , 15)
-2 T (al#@|0(aloet B au,  16)
and
8=2i(a|5e ¥ |p)(alGe T |p*xA,,, (A7)
«,B

where ¥(§)=3(Fe T 1 &7 #F) with ¥ the velocity
operator given by Eq. (6) with A, set to zero. In
Eqs. (12)-(17), the common factor 4,4 is given by
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Ayp = (fa ~fs )/ (ﬁw"'Ea = EB)-

The gauge invariance of Eqs. (9)-(11) is easily
demonstrated using identities similar to those de-
rived and used in Ref. 10.

Equations (9)—-(11) have some interesting fea-
tures. The terms involving M N, N, and 8 have
not generally been included 2° in prev1ous discus -
sions. """ Roughly, Sis a spin-spin correlation
function [see Eq. (17)] and gives the paramagnetic
spin susceptibility. 21 The other three terms mix
the longitudinal and transverse character, and the
electric and spin-magnetic character of the re-
sponse. The latter is roughly a mixing of spin
and orbital effects. In fact, examining Eqs. (13),
(15), and (16), one sees the M’s and N’s are charge-
spin and current-spin correlation functions, and
generally have nonzero terms only for states |a)
which have a mixed space and spin character due
to spin-orbit coupling. We can use Eq. (10) to find
the general conductivity o,

(18)

y_-g_) ‘E,, (19)

where I is the unit matrlx and Q is a matrix defined
such that q x El =Q - El The first two terms on
the right-hand side of Eq. (19) give the usual con-
ductivity given in previous treatments. "1 13,15

The last term (proportional to N) results from the
inclusion of spin effects and the generality of the
approach given here. Another relation between
jiand E, can be obtained by inserting the expres-
sion for the magnetization m1 into Maxwell’s curl-B

equation
iw\[= (\s - =
(E)[E (?>quXE1]

ic? ., - ec\~. =
——w—q><[(%gulg)z_8_-q><E1 —(%)5@1] .

(20)

ih=2-E=

This equation also has a term proportional to N.
Furthermore, there is a term involving S, the
paramagnetic susceptibility. A similar term ap-
pears in Fermi-liquid spin-wave theory, ® but has
not been included in simple SCF analyses.”™ " The
last bracketed term on the right-hand side of Eq.
(20) is just the curl of the magnetization. The
form of this term and it’s insertion as a source
term in Maxwell’s equations is consistent with the
definition of the velocity operator given by Eq. (6).
An alternative and equivalent approach is to use
only current and charge as sources (not magneti-
zation) in Maxwell’s equations, while defining the
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current operator as the nonrelativistic limit of the
Dirac current operator.?? This current operator
differs from that defined above by an additional
term which yields the magnetization current of Eq.
(20). In the absence of an external perturbation,
nonzero solutions to Eqs. (19) and (20) for E, re-
quire

lo=-Z1=0 . (21)

Equations (19)-(21) give the general implicit dis-
persion relations for the collective modes of the
electron gas. In general, the form of the equa-
tions and the solutions to Eq. (21) are quite com-
plicated. The remainder of this paper discusses
those solutions in various approximations.

III. EFFECTIVE MASS APPROXIMATION

In this section, we discuss the dispersion rela-
tions of the collective modes in situations where
we can approximate H by the effective mass
Hamiltonian

- - 2
H*:(l’a—%Ao—%A1> /2?.m"‘+ecl>1

+é‘g* IJ-BE' (§o+§1) , (22) -

where m* is the effective mass and g* is the ef-
fective g factor. Under these conditions, the
eigenstates of Hf (defined in analogy with the
definition of H, in Sec. II) are given by single-term
products of an orbital wave function ¥ (¥) and a
spin eigenstate | o)

la)=d(F)lo) (23)

where ¥ (T) is the Landau wave function for an elec-
tron in a magnetic field. The crucial point here
is not the parabolic mass or constant g* approxi-
mation, but the “pure spin” nature of the eigen-
states. These eigenstates have expectation values
of o,, the component of & along EO, which are in-
dependent of T and correspond to either spin up
or spin down. For the Hamiltonian of Eq. (7) this
feature is no longer true. In general, the eigen-
states of Hy have a mixed space and spin character.
In this effective mass approximation the analysis
of Sec. II simplifies considerably. Obvious candi-
dates for elimination from the analysis of Sec. II
are the matrices N and N, and the vector M. These
quantities involve a mixi_r—lg of spin and orbital phe-
nomena which we expect to be eliminated by the ef-
fective mass approximation. Note that the opera-
tors ¥ (q) and e™? conserve the spin quantum num-
ber o of the effective mass eigenstates [Eq. (23)],
while the x and y components of the operator & e
have nonzero matrix elements only between
states of opposite spin. Thus, all components of
M, N, and N are zero except M,, N,, N,, and
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N,, (and similarly for Ij_). These remaining com-
ponents are small under the following conditions.
First, they vanish identically for zero magnetic
field because of the equal occupation of the degen-
erate spin-up and spin-down levels. In the quasi-
classical limit [Aw,, 7w, <Ep, where w,=(eB,/m*c)
is the electron cyclotron frequency and

w,= (g*ugpB,y/7) is the electron spin-flipfrequency],
they are zero to first order in B,. In the quantum
limit [#w,, #ws=0 (Er) and zero temperature], we
will generally consider high frequency and long
wavelength so that the inequalities w>> qvy and
q7, <1 hold, where vp is the Fermi velocity and
7.=(ic/eB,) is a characteristic cyclotron radius.
Again the remaining components of 1\_/1, N, and ﬁ
are negligible and, furthermore, exhibit no reso-
nant denominators near electron spin resonance
(w=w,), as opposed to the characteristics of all
the effects discussed below. Thus, Egs. (9)-(11)
become

m=—(e%c/iw)K E, , (24)
j1=0. E,=- [(Noez/imw)1_+(ezcz/iw)i]~_ﬁl ,  (25)
and
i, = (3¢*05)%8 - By. ()
Equation (20) takes the form
$i=2- B = Gw/4n) [E,+ (¢/w?) §x §x E]

- (ic/w) (3*1e)*qx 8- GX E, . (27

The solution of Eqs. (24)—(27) is further facili-
tated by the fact that one can show that the matrices
G, =, 8, and J all have the form

Sex Sy O
S=|S, S,y 0 . (28)
0 0 s,

This is a familiar form for the electrodynamics of
an electron gas in a magnetic field and yields the
explicit separation of certain properties of modes
of wave propagation which are the solutions of Eq.
(21). In addition, we have the symmetry prop-
erties 0y = —0yy Sgy=—S,, and S,,=S,,. Inthe
high-frequency long-wavelength limit stated above,
we also have'® 0,,=0,,. We now consider the two
characteristic geometries for wave propagation:
perpendicular and parallel to the magnetic field.
For g l§0 we assume without loss of generality
that the x direction is along §. We introduce the
usual dielectric tensor defined by €=1 - (47/iw) o
and find T -
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A
>
o
=
(=
=
|eo

€ x €xy 0
= Z)—.: —;: =€ €xx — nz (1 - 4'”3’:) 0 ’ (29)
0 0 €oe=n* (1 =475")

where n=(gc/w) is the index of refraction and S’
=(3g8*up)*S. Equations (21)and (29)have, as usu-
al,?® two characteristic solutions. First, the ex-
traordinary wave has E, (partly longitudinal and
partly transverse) polarized in the plane perpen-
dicular to ﬁo and the following dispersion relation:

(30)

The term proportional to S, modifies the usual
dispersion relation for the extraordinary wave.?
The matrix elements occurring in S, are diagonal
in the spin quantum number and thus there are

no resonances in S’, near electron spin resonance.
The z-directed B field of the wave couples to the
z-directed magnetization of the electrons, leading
to a small undramatic renormalization of the index
of refraction. Second, the ordinary wave has f:l
polarized along ﬁo and the dispersion relation

(1~ 4mS5e) = €t E?cy /€sx

" =€, /(1 —4nS",) (31)

The ordinary wave is a purely transverse wave
with B;1 B, and (B,/E;)=-n. Its dispersion rela-
tion [Eq. (31)] involves the perpendicular suscepti-
bility S’ since B, in this geometry couples to the
perpendicular magnetization. Note that there is a
zero of n at the poles of S’,. Also, » has poles at
frequencies such that (1 -47S/,)=0. The quantity
S’ has matrix elements off diagonal in the spin
quantum number, leading to a pole in S/, at elec-
tron spin resonance w=w,. Near spin resonance,
there is a frequency such that (1 —47S.,)=0. In
the long-wavelength limit, Eq. (31) becomes

e f-g)l-tts) 0 @

where w, is the electron plasma frequency, dw
= (4n/n)(3g*1Lp°N,, and N, is the net spin density
of the electron gas. Thus, #° has a zero at w=w,

€ =1 (1 -47S")
- €,y = 4TS,

0

This simplest mode in this case is the longitudinal
plasma wave with E; along B,. Its dispersion re=-
lation is given by €,,=0 and is not modified by the

and a pole nearby (w= w,+06w for dw<w,). The
dispersion relation Eq. (32) is shown qualitatively
in Fig. 1 for the case w, » w;, 6w < w,. The
shaded regions are evanescent. The abrupt change
in propagation characteristics near w=w, is the
usual plasma-edge effect. The magnetization of
the electron spins introduces a narrow band of
allowed frequencies of propagation in what would
normally (S=0) be expected to be evanescent. For
wp K wg, the effect of inclusion of the spin suscepti-
bility is the opposite. A narrow band of evanes-
cence is introduced in a region of allowed wave
propagation. The relative width of the band pass
is (bw/ws). Twice this latter quantity is just the
static paramagnetic Pauli susceptibility of the elec-
trons and is independent of B, for weak fields.
Unfortunately, for typical semiconductors and
metals this number is quite small [(6w/w,) ~10-°
-10%]. These numerical estimates apply even to
degenerate electrons in semiconductors with large
g* and a strong magnetic field so that all the elec-
trons are in the lowest quantum level. Relaxation
effects in typical semiconductors probably make
such a narrow propagation band unobservable for
realistic magnetic fields and observation frequen-
cies. From the form of Eq. (31), one expects the
spin relaxation time (73) to control the behavior of
the resonance in the susceptibility. For obtainable
magnetic fields and typical physical parameters,
one finds (6wT,) <1. This condition precludes ob-
servation. Furthermore, the physical properties
of metals can be such that [even though 6w 7T,=0(1)]
the SCF analysis given here is incorrect and ex-
change interactions® are important. The exchange
interactions shift the poles of S’ by a factor pro-
portional to ¢% and yield the spin-wave excitations
observed in the alkali metals.? .

For propagation along the field q i Eo, Eq. (29)
becomes ’

€+ 4TPS,

xx = nz (1 - 4'”5;5:) 0

(33)
0

Ell

inclusion of the spin susceptibility. This is to be

_expected since the longitudinal plasma wave is a

density oscillation and, in the absence of spin-
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FIG. 1, Dispersion relation for the ordinary wave

propagating across the magnetic field in the effective
mass approximation (w, > w,).

orbit mixing effects, does not couple to the spin
magnetization. There are two transverse waves
with E lﬁo. The dispersion relations for these
waves are the solutions of

2 €, ‘ _ & =
(n_1—41r81><n2 1-41TS.> 0

where €,=€,, i€, and S, =S/, +iS),, and we have
used the symmetry relations given above. For S !
=0, the two waves are the usual right and left
circulz_i_rly polarized transverse waves propagating
along Bo.z3 In the appropriate low-frequency re-
gime, one of these waves is the helicon.?* Since
Eq. (34) involves the perpendicular components of
the susceptibility S;, and S, the propagation of
these waves shows resonances and cutoffs near
spin resonance, as was the case with the ordinary
wave in the geometry ﬁl-ﬁo. Only the #, (n.) root
of Eq. (34) can exhibit these effects when (E, =E,)
is negative (positive), since only S; (S/) has a
resonant denominator. However, for 4|l B, the
resonances in S/ are smeared by continuum terms
of the form qv,, where v, is velocity of an electron
along the field. Furthermore, even if the maximum
value of (gv,) is small enough, the wave propagation
is modified only in a narrow range of frequencies
(near w,) with width Aw=26w, where dw is the
quantity defined above. As for the ordinary wave,
these phenomena are probably unobservable for
realistic physical conditions.

In making the long-wavelength approximation
g7, <1 in the above discussion, we have neglected
finite gyration radius effects in the wave propaga-
tion. One common consequence of the inclusion of
these effects is anomalous dispersion near the har-
monics of the cyclotron frequency (w= nw,).2%%®

(34)
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In the analysis given here, the inclusion of higher-
order terms in g7, will yield, in addition, anoma-
lous dispersion near the combined frequencies
w=nw.*+ ws This results from finite matrix ele-
ments in §’ between states with opposite spin and
with different orbital quantum numbers which, in
turn, yield poles in the perpendicular components
of _S_' . Inclusion of these phenomena in the above
discussion would only complicate matters and is of
small importance in view of the problems with spin
relaxation.

Although the above phenomena appear unobserv-
able for currently realistic situations, the results
do have important bearing on the suggestion made
by Iannuzzi®” that one might observe electron spin
resonance in a classical gas plasma. Much of the
above discussion applies equally well to a free
electron gas with parameters m*=m and g*=g.
Tannuzzi’s arguments are unphysical on several
grounds. First, since the anomalous g factor of
a free electron®® is very nearly equal to 2, the
frequencies w, and w, are almost identical. This
fact is a fundamental property of the individual
electrons and has nothing to do with the direction
of propagation of a wave in many-electron gas.
Second, since from the above analysis we know that
the extraordinary wave does not show spin reso-
nance effects, the upper hybrid resonance® and
other properties of the extraordinary wave have
no bearing on the problem discussed by Iannuzzi
(contrary to his claim). Only the ordinary wave
couples to the perpendicular magnetization of the
electrons, and then, only very weakly. Third,

 both the ordinary and extraordinary waves exhibit

anomalous dispersion near the cyclotron frequency
and its harmonics.?% These cyclotron resonance
effects derive from the nonzero temperature of the
plasma electrons (finite gyration radius effects).
Their importance in any given experimental situa-
tion must be ascertained, since they are likely to
dominate the nearby spin resonance. Thus, Iannuz-
zi does not give an unambiguous test for the ob-
servation of spin resonance in a gas plasma, as he
suggests.

IV. LONGITUDINAL WAVE APPROXIMATION

The effective mass approximation of Sec. III is
clearly an oversimplification. While giving cor-
rectly many of the quantitative features of the elec-
trodynamics of the electron magnetoplasma, cer-
tain phenomena are omitted. Particularly, the ef-
fects of spin-orbit mixing of the one-electron states
in real solids have been discarded. In general,
spin-orbit coupling® in H, mixes the orbital (space)
and spin character of the electron wave functions
so that they are no longer eigenstates of the spin
operator ¢,. We then have for the states
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la)=9@® [ H+x@ ) ,

where ¥ and x are appropriate orbital wave func-
tions, and |4) and |¥) are eigenstates of & and o,
Unfortunately, the full treatment of the general
dispersion relation embodied in Eqgs. (19)—(21) using
the general wave functions of Eq. (35) requires
the inclusion of many complex terms and becomes
extremely unwieldy. However, we can simplify
the analysis of Sec. II in a meaningful way while
retaining complexities such as arbitrary energy
band structure and spin-orbit coupling. One way
of doing this is to make the longitudinal wave ap-
proximation in which we analyze the response of
the plasma by retaining only charge density oscil~
lations and the associated ftl which is parallel to g
and determined by Poisson’s equation. The longi-
tudinal wave treatment of magnetoplasma collective
modes is never complete, but is often made since
it closely approximates physical situations in which
either (i) the primary response of the plasma for a
particular set of conditions consists of charge den-
sity fluctuations, or (ii) the experimental probe
itself acts as an effective scalar potential probe.
One example of the latter is inelastic light scatter-
ing. ‘
Returning to the analysis of Sec. II, we neglect
all transverse components of -E'Il (and all compo-
nents of B,). Using Eq. (9), Poisson’s equation is

(35)

iq- By = - (4rec/iv) K- E, (36)

Using identities similar to those used in the proof
of gauge inveg'iance, one can show that nonzero
solution for E, in Eq. (36) requires

\ 5 .
€(Q, w)= 1—%%— Z% I(Bieiq"" a}lz
fa_f -
X(ﬁw +E, f-E3>~ 0 (37)

Here, € (q, w) is the longitudinal dielectric constant
and ean be showntobegiven, asusual, bye=(q-€-q)/
¢%, where € is the dielectric tensor defined by ¢
=1~ (4n/iw) 0. Equation (37) expresses the familiar
result for the longitudinal wave approximation:
The dispersion relation for the waves is given by
the zeros of the longitudinal dielectric constant.
The important feature of Eq. (37) is that we have
made no approximations concerning the nature of
the states | o), in contrast with the discussion of
Sec. IIL

It is instructive to consider the relation of the
modes whose dispersion relation is given by Eq.
(37) with the modes discussed in Sec. II. For
propagation along the field, Eq. (37) will yield'?
the root w=w, in the long-wavelength limit. This
is the longitudinal plasma oscillation root, and
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Eq. (37) is equivalent to €,,=0. For propagation
across the field, Eq. (37) will give, to a good ap-
proximation, the dispersion relation for the extra-
ordinary wave [Eq. (30)] under conditions where
this wave is almost entirely longitudinal. This re-
quires a large index of refraction (»>1) and the
dispersion relation is approximately €,.=0. The
modes in this case (for long wavelengths) are'? the
magnetoplasmon (3 wﬁ + wﬁ) and the Bernstein
modes® (w= nw,). The properties of these propaga-
tion modes which are associated with the zeros of
Eq. (37) are well known. The purpose of this sec-
tion is to discuss additional roots of Eq. (37) which
occur near electron spin resonance (ESR) and were
first reported in a preliminary publication.* The
discussion in this section will be considerably more
detailed than that above since these waves may be
observable with available techniques.

For long wavelengths one often finds collective
modes at frequencies near the characteristic fre-
quency wpe= (Es — E,)/%, when the matrix element
mgo @)= (Ble™®F| @) is nonzero, and when there is
a peak in the one-electron density of states at the
energy fwg,. The Bernstein modes are a good ex-
ample. In the absence of spin~-orbit mixing of the
one-electron wave functions [see Egs. (35) and (23)],
one does not find roots of Eq. (37) near the spin-
flip frequency w,= wyqyr, Since mqyq (Q) is zero (by
inspection). . However, when spin-orbit mixing is
important the spin-flip matrix element M, ()
=lm (@)%, where |a) and |a’) arespin-conjugate
pairs, can be nonzero and a spin-wave root to Eq.
(37) can occur.

The physical origin of these novel spin waves
stems from the following. For crystals with in-
version symmetry®® the eigenstates of Hy[Eq. (35)]
occur naturally in degenerate pairs (in zero mag-
netic field).*® The degeneracy of these spin-con-
jugate pairs is split by a static magnetic field.
Resonant excitation of electrons between these
states in a magnetic field is a generalization of
simple ESR.®' Without spin-orbit coupling, exci-
tation of electrons between opposite spin states
requires application of a perturbation which couples
directly to the spin, e.g., an oscillating magnetic
field. With spin-orbit coupling, a perturbation
which adds only a “spacelike” term to the Hamil-
tonian, e.g., an oscillating electric field, can in-
duce spin-flip transitions. In the same manner,
the long-range Coulomb forces between electrons
act through spin-orbit coupling to correlate the
motion of electrons with opposite spins, leading to
the spin waves described here.

A. Spin-Flip Matrix Element

The spin-flip matrix element M, (q) has important
long-wavelength properties: (i) M,(0)=0 and (ii)
we generally expect the leading term in M to be
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proportional to q,, where ¢; is an appropriate com-
ponent of q for a given crystal structure and direc-
tion of B0 The first property follows from the
orthogonality of the spin-conjugate states. The
second property follows from consideration of con-
duction electron spin-orbit coupling in various
model solids.

For electrons in a nondegenerate (excluding spin)
energy band which is coupled directly to nearby
(in energy) bands by spin-orbit coupling, we can
estimate M, using perturbation theory. If X, is
the unperturbed (no spin-orbit term in Hy) orbital
wave function of the conduction band, then the con-
duction electron wave function is®?

) LA
Xo:e-XOIi>+"§g EQ"E

+E <X,, |H, | Xo)Xn |:F>
n#0 EO_En

to first order in H’, the spin-orbit contribution to
H, [see Eq. (7)]. The sums are over all other
bands, H, is the orbital part of the component of
H' which is diagonal in spin, and H, are the orbital
parts of the components of H' which flip the spin.
Keeping only terms to first order in (A/Eg), where
A=0 ({x,H lxo)) is a characteristic spin-orbit
energy and E,= O (E, - E,) is a characteristic in-
terband energy, we find

[H,+H. IXo><Xo'em|x )

o e xg.) = £ Mol et Hele)

For wavelengths long compared to a unit-cell di-
mension (xol e®*¥|y,) ~(hg/m) (P,/E,), where P,
is a characteristic interband momentum matrix
element in the direction of g. The shift 6g in g
from its free electron value is approximately
(A/E,), and we find

Mg~ (6g)? (W*q*P% /m*E?) . (38)

For zero spin-orbit coupling 6g=0 and M, vanishes.

As anticipated M, goes as the square of the wave
vector.

As an additional example, M, can be calculated
for a nondegenerate band edge using an effective
mass transformation.’® In momentum space the
operator 0= ¢'%? ig

- 8
Op=exp (—hq-;;—)

Applying the canonical effective mass transforma-
tion,*® 0, becomes
i,

0,=e°0e® =¢ s

where
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> . - )
r,=e”T,e’=e s(—ﬁ $> et .

We can use Yafet’s results® for T, to second order
in S. For the simplest case of only two nearby in-
teracting bands separated by an energy gap E,, one
finds
- - ., 9 ¢ gx[p-(e/c)A - -
qQ T~ -0q- 5= - = q———‘——‘—ME (e/c) Aol . (B*=-p),

4

(39)
where @ * is the electron effective magnetic mo-
ment in the band under consideration and d=4gu0.
Treating the second term on the right-hand side of
Eq. (39) as small, the operator O in coordinate
space is approximately

omert (12 DUE=WOR (1)
o E
(40)

We evaluate M, by using O as given by Eq. (40) be-
tween the effective mass eigenstates derived from
the exact eigenstates of H, using the canonical
transformation to lowest order. In this approxima-
tion, the first term on the right-hand side of Eq.
(40) is diagonal in the spin quantum number and
gives no contribution to M,. Finally, we generalize
our approach by considering not just spin-conjugate
pairs, but states which differ in effective moment
g*, and may or may not differ in orbital character.
We find the general spin-flip matrix element

My;=|G|e® —Z———(ﬂ)ﬁd (% - u)[J>

4

(41)

where ¢, j denote the orbital quantum numbers of
the effective mass (and effective magnetic-mo-
ment) states |4, 0,) which are now eigenstates of
o,. Note that M =M;;. In the absence of spin-or-
bit coupling, the orbital part of the effective mo-
ment is zero, sothat £*={ and M;;=0. Again,
the leadmg term in M, (and M;;) is proportional to

. qi For q |l Bo, the orb1tal parts of the operator in

Eq. (41) connect only states of differing orbital
character (i#j). Thus, M =0 for q along the mag-
netic field. Furthermore, for states of differing
orbital character (i+#j) we have the possibility
M,q.), M;;(g,.)# 0, leading to collective waves
which occur at energies near that corresponding

to an orbital change plus a spin flip, and which may
propagate in an arbitrary direction. For states
which have rotational symmetry about By, Eq. (41)
yields, for gL B 0

*x\ 2
P B (a2)

[4

M~ (@g¥ -
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where E(k) = (i%k*/2m*), and kik, is the electron
momentum along the magnetic field.

For solids in which the energy bands of interest
are nondegenerate and have rotational symmetry
about the direction of the magnetic field, we can
use the general wave functions of Yafet®® % to es-

F. A. BLUM 3

x @3- m, ky, k), (43)

where [ is the band index, u,,,(r) is a unit-cell pe-~
riodic function with z-component angular momentum
m, ®(N, k,, k,) is the free electron Landau-level'
wave function with denoted quantum numbers, and

tablish some general properties of M;;. The wave +denotes the spin state (identified by some appro-
functions have the form priate scheme, see Ref. 29). For wavelengths
ll £, n, ky, k)= E Cylmuy, w(T) long compared to unit-cell dimensions, we find
|
. * . ) 2
2 Cirmin (C‘;’_"'") @m' +i-m, K, K|V |oh~L-m, &y, k)| . (44)

Since the states are orthogonal, we can use the
long-wavelength (g7, << 1) properties of the matrix
element of e*3F between Landau states to find M,
«qlo(k’,~q,— k) 8(k,,—q,—k,), where g, is the
_xpagmtude of the component of q perpendicular to
By,. Thus, M, is zero for qIIBo and the fundamental
spin wave cannot propagate along the field in these
solids.

All of the above discussion is confined to solids
with nondegenerate bands and crystal structures
with inversion symmetry.3® In general, one ex-
pects inversion asymmetry to enhance the magni-
tude of M, and introduce anisotropy effects which
depend on the direction of Eo in the crystal. The
properties of M, for degenerate bands and more
details for nondegenerate bands require specific
treatment for a given material. In any case, the
M,; have properties which are sufficiently general
for the discussion of dispersion relations given in
Sec. IV B. '

B. Dispersion Relations

In view of the discussion of Sec. IV A, we confine
our attention to the generally favorable geometry
§ LB, and find the long-wavelength roots of Eq.
(37). In the limit that ¢ goes to zero, Eq. (37) be-
comes

1= _E’“LT gf“A—q—+0(ql (45)

W —We

where, as a first approximation, we have neglected
any dependence of w, on orbital quantum numbers,
and

_8
;Te Z) lmaa:

(fa=far). (46)

The quantity Aw goes roughly as N, the net spin
density of the electron gas, vanishes for zero spin-
orbit interaction, and is generally expected to be
independent of q, to lowest order ingq,. Since wg

is defined to be positive, Aw is positive. The

r

specific form of Aw depends on the details of the
states for the material being considered. From
the estimates of M, given above, one expects typ-
ically to find Aw < w,. Equation (45) has the fa-
miliar magnetoplasmon root'? near w?= wf + w?, when
this root is not too near w,. In addition, Eq. (45)

has a spin-wave root (for Aw < w,):

W™ 0l + w, 8w [(W2 - wh)/(Wi+wi - wh)]+0(?).

(47)

Note that the second term on the right-hand side of
Eq. (47) is independent of q,, as contrasted with
Fermi-liquid spin waves®® which have a corre-
sponding term proportional to g2 This g-indepen-
dent frequency shift should not be taken as corre-
sponding to a many-electron shift in the one-elec-
tron g factor. As shown below, a typical response
function will have poles at both w and the solutions
in Eq. (47). The dispersion relation Eq. (47)
would have a dependence on g, similar to that for
Fermi-liquid waves if for some specific case M,
=0(g}). In any case, the waves considered here are
further distinguished from the Fermi-liquid type
by the fact that they are not generally expected to
be observable for q Il B0 [since M4(g,)=0]. Also,
for the alkali metals the spin-orbit interaction is
very small (| 6g1<10%%). This leads to estimated
spin-wave frequencies which are shifted from ESR
by amounts much smaller than those observed.

From the properties given above, we expect M,
to be nonzero also for states which have opposite
spin and different orbital character. This leads
to additional terms in Eq. (45) which are important
when w is near the combined frequencies.
(Nw, +w,), where N=1,2,.... For w sufficiently
near a combined frequency, Eq. (45) becomes

2 Aw Awylg.)
v —ge ey —Po LD . 48)
w-w: " wi-w? +w—(chiws) (

If the magnetoplasmon and fundamental spin-wave
roots are not near the combined frequency, then
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Eq. (48) has new roots given by
w=Nw, ‘Ews"'o[AwN(‘h)]y (49)

where we have assumed Awy < wg and w, = w,, for
simplicity. Generally, Awy(g,) will not be inde-
pendent of ¢,. In fact, it will usually be of order
q? or higher, so that the frequency shift (from
combined ESR) vanishes in the long-wavelength
limit. For spherically symmetric bands or cases
in which we can use the form M, given in Eq. (41),

~ one can see that Awy(g,)=0[(g272)¥]. Thus, for
long wavelengths one expects Awy<< Aw. These
combined modes would be difficult to observe be-
cause of their small frequency shifts and response
strengths.

We now have sufficient information for nondegen-
erate spherically symmetric (or otherwise simple
as described above) energy bands to construct the
qualitative dispersion curves shown in Fig. 2. The
curves are correct as shown only for low electron
density w,<w, and w,>w,, since the sign of the
frequency shifts for the waves depends on the sign
of [1-w2/(w?-w?)]. Such conditions are appro-
priate, for example, in degenerate n-type InSb
(see the discussion in Ref. 4). The downward
curvature of the curve for the fundamental mode
(near w,) follows from the form of the matrix ele-
ments of Sec. IVA. The long-wavelength set of
spin-wave modes formed by the fundamental
[w~ we+(Aw/2)] plus combined w~ Nw, + w, excita~
tions is reminiscent of the plasmon set consisting
of the magnetoplasmon w?~ w§+ wﬁ plus the Bern-
stein modes w~ Nw,, N22. The dispersion rela-
tions of both sets are solutions of Eq. (37). The

2w+ wg |

2we - wg

We + Wy

FREQUENCY

wc-ws

S

_
/
/

ws

O WAVE VECTOR (q,r,)

FIG. 2. Qualitative long-wavelength dispersion_curves
for longitudinal spin-orbit-induced electron spin waves
propagating perpendicular to the magnetic field in a solid
with simple nondegenerate bands (see Sec. IV B). For
display purposes, the fréquency shifts are exaggerated.

‘the longitudinal collective modes.
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normal plasmon set has been suppressed in Fig. 2
for clarity.

As an example of a specific calculation, we pre-
viously computed4 Aw for doped n-type semiconduc-
tors of the InSb type. For these materials, the
conduction band is spherical, rather accurate wave
functions are known, %3 and spin-orbit coupling is
relatively important. For InSb with donor concen-
trations of about 10 cm™® and magnetic fields
around 100kG (where only the lowest Landau level
is occupied), it was found that (Aw/2w¢)~ 0.01
with w,~ 190 cm™. While this frequency shift is
small, effects due to these waves might be observ-
able. Rather narrow spin-flip linewidths (< few
cm-!) have been observed in inelastic light scattering
experiments.’ Conventional ESR experiments®®
give linewidths on the order of tenths of cm™! or
less. Such estimates merely point to the possibility
of spectroscopically differentiating between ESR
and the spin wave. One must also account specifi-
cally for the damping of the wave itself. Some dis-
cussion on this matter is given below. A detailed
and consistent treatment of InSb, which requires
the inclusion of nonparabolicity, and both orbital
and spin relaxation effects, will be deferred to a
separate paper.

C. Excitation

One of the most promising ways of coupling to
and exciting the longitudinal spin waves is inelastic
light scattering'® in degenerate semiconductors.
Such experiments can probe the electron gas as an
effective long-wavelength potential tending to drive
Furthermore,
through virtual interband transitions and the spin-
orbit coupling of the states, the light can effectively
drive ESR transitions’”®® and, therefore, have a
reasonable strength for driving the nearby spin
wave. We have shown previously'® that the total
cross section (infinite relaxation times) for scat-
tering from the fundamental spin-wave mode is of
the same order as the cross section for single-
electron spin-flip scattering, a strong observed®’
process.

An additional way of observing collective modes
in degenerate plasmas is an infrared slab trans-
mission (or reflection) experiment. Full analysis
of such an experiment requires the use of the full
treatment of wave propagation given in Sec. II.

All the characteristic waves of Sec. III are coupled
in a complicated way. However, from the proper-
ties of the waves in the effective mass approxima-
tion it appears tl that the extraordinary mode config-
uration (Elk.L Bo) is most likely to excite the lon-
gitudinal spin wave. In principle, both ordinary
and extraordinary waves can couple to the longitu-
dinal waves. One would hope to observe anomalous
transmission or reflection near ESR.
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To emphasize the mixed nature of the orbital and
spin effects considered in this section, we consider
the typical ESR gedanken experiment in which we
consider the excitation of the electrons by an oscil-
lating magnetic field Bl exp(éq . T - iwt) that is per-
pendicular to Bo We derive the magnetization
ﬁl(ﬁ, w) which develops in response to ﬁl, but use
only Poisson’s equation to find

2 -
my= (g—z“ﬁ) (g. B, +

4'”22 M* (1\-7[' Bl) )
e € ’

where € is g1ven by Eq. (37), Sis given by Eq.

(17), and M is given by Eq. (13). This treatment
is equivalent to a microscopic random-phase ap-
proximation. One sees immediately that an in-
creased magnetization response occurs at the zeros
of € and the poles of S. The large response at the
zeros of € result from the spin-orbit mixing. One
ordinarily would associate the zeros of € with
charge-density perturbations only. In general, the
charge-density, current, and magnetization per-
turbations are coupled and interrelated.

D. Damping

For propagation oblique to §,| , the energy de-~
nominators in Eq. (37) have aterm of the form
nigyv e, where g, is the magnitude of the component
of § along Bo, and v, is the velocity of an electron
along Bu This term introduces a continuum of
poles (branch cut) centered about w,. In order
for the fundamental spin-wave mode to be well de-
fined, its frequency must lie outside this range of
frequencies. Otherwise, the wave excitation is
damped due to single-electron excitations. Since
Aw is typically rather small, the mode is most
likely to be well defined for gl Eo. Similar argu-
ments apply for the combined spin waves, but the
conditions will be even more severe since Awy
« Aw. Even for §L B, the spin-flip frequency wqq-
itself may depend on v,. Such an effect is related
to energy band nonparabolicity and a well-defined
root must lie outside the range of allowed values of
Woat (’U,)

Finally, we need to consider the effect of orbital
and spin relaxation in real solids. Such effects are
complicated since we are considering quantum
states that are spin orbit mixed. Even without the
spin-orbit mixing, a proper formulation of an ap-
proximate relaxation-time ansatz requires an ex-
tension of an approach recently developed by Greene
et al., '® which treats orbital but not spin relaxation.
However, we can give physical arguments for the
nature of the damping. Near spin resonance the
dominant matrix element of the first-order density
matrix is

(pl)aa' =ie('c'1 * -E.l/qz)muu’(a)Aaa’ . (50)
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In the long-wavelength quasiclassical limit, we can
roughly identify (p,),, With a component of the
particle distribution function. If we evaluate A,,.
approximately by using energies for a simple para-
bolic band and consider alﬁo, it will be independent
of the particle velocity. This is the usual form of
Ayq expected for ESR. However, from the dis-
cussion of Sec. IVA, we generally expect m4,. to
be dependent on the orbital quantum numbers lead-
ing to a velocity dependence in (p,)q .- in the quasi-
classical limit. This velocity dependence indicates
momentum perturbations associated with the wave.
Even in favorable cases for which the spin relaxa-
tion time 7 is very long compared to the momentum
relaxation time 7,, the destruction of the coherence
of these momentum perturbations will dominate

the damping of the waves. Therefore, we generally
expect the linewidth of the longitudinal spin wave

to be determined largely by the momentum (orbital)
relaxation time. For 7,> 7, and for an excitation
mechanism which couples both to ESR and the longi-
tudinal wave, the wave will manifest itself as a
broad bump near the sharp ESR line. This situa-
tion is analogous to the case of Fermi-liquid spin-
wave excitation in thin films, %40

V. DISCUSSION

It has been shown that a general self-consistent-
field theory of the electrodynamic response of a
quantum magnetoplasma in a solid yields unusual
wave-propagation effects for frequencies near
electron spin resonance. Due to the smallness of
the static Pauli susceptibility and spin relaxation
times in typical solids, the transverse spin-wave
effects discussed in the effective mass treatment
of Sec. III are probably unobservable. However,
there are spin waves associated with zero of the
longitudinal dielectric constant, which might be
observable in semiconductors or semimetals where
spin-orbit mixing of the one-electron eigenstates
is significant. A specific example for the semi-
conductor InSb was cited. Similar calculations for
other materials would be of value since they might
yield more promising examples.

This paper focuses on one particular aspect
(spin effects) of the electrodynamics of quantum
solid-state plasmas in a magnetic field. The re-
sults of Sec. II are rather general and may harbor
interesting consequences which have not been ex-
plored here.

For simplicity, all of the above discussion ignores
the effect of lattice vibrations on the electromag-
netic wave propagation and the effect of electron-
phonon coupling on the results. The former, par-
ticularly, should be accounted for in any situations
where the phonons are strongly coupled to the
magnetoplasma modes. This procedure is straight-
forward in polar semiconductors.*' Polaron self-
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energy effects®? have been ignored. Also, although
the treatment given here includes in a relatively
general way the effects of the periodic lattice poten-
tial of the solid [see Eq. (7)], it neglects local
variations in the microscopic field over distances
on the order of the unit-cell dimensions.* These
phenomena are negligible for wavelengths long
compared to a unit-cell dimension.

Kaplan and Glasser®® have discussed the possi-
bility of the existence of spin-wave excitations in
nonmagnetic metals resulting from spatial anisot-
ropy in the g factor and the spin relaxation time.
They solve the quasiclassical Boltzmann equation
in which they treat the spatial anisotropy phenome-
nologically by inserting a wave-vector -dependent
g and T, in the spatially Fourier-transformed
transport equation. Due to the smallness of pos-
sible anisotropy and typical momentum relaxation
times, they find that the spin waves are strongly
damped and unobservable. The discussion of the
present paper is relevant to their treatment since
spin-orbit coupling can give rise to spatial aniso-
ropy of the type they discuss. One should note
that a more rigorous and complete treatment of their
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problem could be obtained by taking the quasiclas-
sical limit of the theory given here.

Finally, it should be pointed out that while the
nomenclature “spin wave” has been used for con-
venience to label some of the phenomena described
above, some of the propagating waves involved are
not spin waves in the traditional sense. In each
case, the size of the effects discussed involves the
spin paramagnetism of the equilibrium state and is
spectroscopically associated with electron spin
resonance. However, the waves do not necessarily
carry a large spin magnetization. The longitudinal
spin waves are a prime example. Their primary
response to a longitudinal potential probe would
consist of a weak density perturbation resulting
from the correlation of the motion of electrons with
opposite spins. The character of the waves is
complex and mixed, as was emphasized in Sec.
IVC. :
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When electron-lifetime effects, electron-hole pair excitations, or both are included in the
description of an electron gas, the frequency associated with the surface plasmon is a com-
plex quantity, the imaginary part providing a measure of the damping of the plasmon. The
surface-plasmon dispersion relation then involves the specification of this complex frequency
as a function of the wave vector parallel to the surface. A general theory is developed for
such a surface-plasmon dispersion relation in a semi-infinite free-electron gas bounded by
a surface that scatters the electrons specularly. The properties of the electron gas enter
through the nonlocal transverse and longitudinal dielectric functions €,(q, w) and ¢, (g, w),
both of which include a finite electron lifetime here. The results obtained using local and
hydrodynamic approximations for the dielectric functions are presented briefly, and the
self-consistent-field approximation is discussed in detail. The calculations are done both

with and without retardation.

I. INTRODUCTION

Surface plasmons in metals have been detected
by electron energy-loss measurements, ! by low-
energy electron diffraction, 2 and, when the surface
of the metal is rough, by optical absorption and
photoemission.® A number of theories of surface
plasmons have been proposed which assume the
metal to be a free-electron gas confined to a semi-
infinite region bounded by a perfectly smooth sur-
face that scatters the electrons specularly, !
These theories differ in the approximations used to
describe the response of the electron gas to an elec-
tric field; the electrons have been treated (a) as a
gas of noninteracting particles, (b) by hydrodynamic
equations of motion, (c) by the Boltzmann equation,
and (d) in the self-consistent-field (SCF) approxi-
mation.

In this paper we present a theory in which the
equations determining the surface-plasmon disper-
sion relation include general transverse and longi-
tudinal dielectric functions for the electron gas.
Results found previously by other authors are ob-

tained by using the appropriate approximations for
the dielectric functions. Retardation of the Cou-
lomb forces is included, but it can be neglected
simply by letting the velocity of light become infi-
nite.

Other recent theories of surface plasmons have
used general electronic wave functions which, in
principle, can be chosen to obey correct boundary
conditions at the surface. !*!® The effects of sur-

‘face roughness!* and a variation in the density

of electrons near the surface!® have also been con-
sidered. Refinements of this type are not included
in our theory.

II. THEORY

We choose a coordinate system such that the
metal is confined to the semi-infinite region z >0
with a vacuum in the region 2<0, and let all fields
and currents have a space and time dependence of
the form

F(F,t)=F(z)etlaxr-9n

These fields will be associated with a surface plas-



